Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

San-Hui Liu, Yi-Zhi Li* and Qing-Jin Meng

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: Ilyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.088$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Methanol(2-methyl-1H-imidazole- κN^{3})(pyridine-2,6-dicarboxylato- $\left.\kappa^{3} N, O, O^{\prime}\right) \operatorname{copper}(\mathrm{II})$

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)\right]$, the Cu atom lies in the centre of an $\mathrm{N}_{2} \mathrm{O}_{2}$ square plane, and the methanol molecule is apically coordinated. The coordination geometry is best described as distorted square-pyramidal. There are intermolecular hydrogen bonds in the crystal structure, which mediate the formation of layers.

Comment

We report here the isolation of a new copper(II) complex, (I). The crystal structure shows that the bond distances and angles in (I) have normal values. The Cu atom lies in the centre of a square plane which consists of two O atoms and two N atoms ($\mathrm{O} 1, \mathrm{O} 3, \mathrm{~N} 1$ and N 2). The average bond distances of $\mathrm{Cu}-\mathrm{O}$ and $\mathrm{Cu}-\mathrm{N}$ are 2.0286 (17) and 1.921 (17) \AA, respectively. The Cu atom deviates from the plane ($\mathrm{O} 1 / \mathrm{O} 3 / \mathrm{N} 1 / \mathrm{N} 2$) by 0.1013 (8) Å towards the apically coordinated methanol molecule; the $\mathrm{Cu} 1-\mathrm{O} 5$ bond length is 2.2685 (17) \AA. The coordination geometry is best described as distorted squarepyramidal.

(I)

There are intermolecular hydrogen bonds in the structure of (I), mediating the formation of layers. The hydrogen bonds result in a two-dimensional network, parallel to the (001) plane. Each molecule participates as both donor and acceptor in such contacts (Fig. 2 and Table 1).

Experimental

Pyridine-2,6-dicarboxylic acid was prepared according to the literature (Singer \& McElvain, 1935). The pyridine-2,6-dicarboxylate copper(II) complex hexahydrate was prepared by the following procedure. To a heated aqueous solution (60 ml) of pyridine-2,6-dicarboxylic acid ($334.2 \mathrm{mg}, 2 \mathrm{mmol}$) was added $1 \mathrm{M} \mathrm{NaOH}(4 \mathrm{ml})$ and copper(II) oxide ($318.1 \mathrm{mg}, 4 \mathrm{mmol}$). The mixture was stirred at 373 K for 18 h and then filtered several times. After two weeks, blue crystals were obtained. This intermediate ($312.7 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in a heated methanol solution of 2-methylimidazole $(50 \mathrm{ml})$. The solution was refluxed for 12 h , and then filtered. After

Received 11 April 2005 Accepted 17 May 2005 Online 21 May 2005

Figure 1
The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level.
five weeks, blue prismatic crystals of (I) were obtained from the filtered solution.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)\right]$
$M_{r}=342.79$
Monoclinic, $P 2_{1} / n$
$a=8.5226$ (10) A
$b=12.2353$ (15) A
$c=13.2586$ (16) \AA
$\beta=105.095(2)^{\circ}$
$V=1334.9(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.61, T_{\text {max }}=0.79$
7005 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.088$
$S=0.99$
2619 reflections
192 parameters
$D_{x}=1.706 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3156
reflections
$\theta=2.3-27.4^{\circ}$
$\mu=1.66 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.30 \times 0.28 \times 0.14 \mathrm{~mm}$

2619 independent reflections
2242 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 9$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 13$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}$

Figure 2
A view of a layer in (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes:
(i) $-\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.]

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	1.99	$2.806(3)$	158
$\mathrm{O} 5-\mathrm{H} 5 D \cdots 4^{\mathrm{ii}}$	0.85	1.83	$2.673(3)$	170

Symmetry codes: (i) $-\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.
All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H} 0.93-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Nanjing University Talent Development Foundation (grant No. 0205005122).

References

Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Singer, A. W. \& McElvain, S. M. (1935). J. Am. Chem. Soc. 57, 1135-1137.

